Julia is a scientific programming language that is free and open source.1 It is a relatively new language that borrows inspiration from languages like Python, MATLAB, and R. It was selected for use in this book because it is sufficiently high level2 so that the algorithms can be compactly expressed and readable while also being fast. This book is compatible with Julia version 1.6. This appendix introduces the concepts necessary for understanding the included code, omitting many of the advanced features of the language.

\section*{G.1 Types}

Julia has a variety of basic types that can represent data given as truth values, numbers, strings, arrays, tuples, and dictionaries. Users can also define their own types. This section explains how to use some of the basic types and how to define new types.

\subsection*{G.1.1 Booleans}

The Boolean type in Julia, written Bool, includes the values true and false. We can assign these values to variables. Variable names can be any string of characters, including Unicode, with a few restrictions.

\begin{verbatim}
\texttt{\alpha = true}
\texttt{done = false}
\end{verbatim}

The variable name appears on the left-hand side of the equal sign; the value that variable is to be assigned is on the right-hand side.
We can make assignments in the Julia console. The console, or REPL (for read, eval, print, loop), will return a response to the expression being evaluated. The # symbol indicates that the rest of the line is a comment.

```
 julia> x = true
true
 julia> y = false; # semicolon suppresses the console output
 julia> typeof(x)
Bool
 julia> x == y # test for equality
false
```

The standard Boolean operators are supported.

```
 julia> !x       # not
false
 julia> x && y # and
false
 julia> x || y # or
true
```

G.1.2 Numbers

Julia supports integer and floating point numbers as shown here:

```
 julia> typeof(42)
Int64
 julia> typeof(42.0)
Float64
```

Here, `Int64` denotes a 64-bit integer, and `Float64` denotes a 64-bit floating point value.\(^3\) We can perform the standard mathematical operations: \(^3\) On 32-bit machines, an integer literal like 42 is interpreted as an `Int32`.

```
 julia> x = 4
4
 julia> y = 2
2
 julia> x + y
6
 julia> x - y
2
 julia> x * y
8
 julia> x / y
2.0
```
G.1.3 Strings

A string is an array of characters. Strings are not used very much in this textbook except for reporting certain errors. An object of type String can be constructed using " characters. For example:

```
 julia> x = "optimal"
 "optimal"
 julia> typeof(x)
 String
```
G.1.4 Symbols

A symbol represents an identifier. It can be written using the : operator or constructed from strings.

```julia
julia> :A
:A
julia> :Battery
:Battery
julia> Symbol("Failure")
:Failure
```

G.1.5 Vectors

A vector is a one-dimensional array that stores a sequence of values. We can construct a vector using square brackets, separating elements by commas.

```julia
julia> x = [];
# empty vector
julia> x = true(3);
# Boolean vector containing three trues
julia> x = ones(3);
# vector of three ones
julia> x = zeros(3);
# vector of three zeros
julia> x = rand(3);
# vector of three random numbers between 0 and 1
julia> x = [3, 1, 4];
# vector of integers
julia> x = [3.1415, 1.618, 2.7182];
# vector of floats
```

An array comprehension can be used to create vectors.

```julia
julia> [sin(x) for x in 1:5]
5-element Vector{Float64}:
 0.8414709848078965
 0.9092974268256817
 0.1411200080598672
-0.7568024953079282
-0.9589242746631385
```

We can inspect the type of a vector:

```julia
julia> typeof([3, 1, 4])
# 1-dimensional array of Int64s
Vector{Int64} (alias for Array{Int64, 1})
julia> typeof([3.1415, 1.618, 2.7182])
# 1-dimensional array of Float64s
Vector{Float64} (alias for Array{Float64, 1})
julia> Vector{Float64}
# alias for a 1-dimensional array
Vector{Float64} (alias for Array{Float64, 1})
```

We index into vectors using square brackets.
We can pull out a range of elements from an array. Ranges are specified using a colon notation.

```julia
julia> x = [1, 2, 5, 3, 1]
5-element Vector{Int64}:
1
2
5
3
1
julia> x[1:3]  # pull out the first three elements
3-element Vector{Int64}:
1
2
5
julia> x[1:2:end]  # pull out every other element
3-element Vector{Int64}:
1
5
1
julia> x[end:-1:1]  # pull out all the elements in reverse order
5-element Vector{Int64}:
1
3
5
2
1
```

We can perform a variety of different operations on arrays. The exclamation mark at the end of function names is used to indicate that the function *mutates* (i.e., changes) the input.

```julia
julia> length(x)
5
julia> [x, x]  # concatenation
2-element Vector{Vector{Int64}}:
```

© 2022 Massachusetts Institute of Technology, shared under a under a Creative Commons CC-BY-NC-ND license.
2021-09-29 14:27:41-07:00, revision 56b14c5, comments to bugs@algorithmsbook.com
[1, 2, 5, 3, 1]
[1, 2, 5, 3, 1]

`julia> push!(x, -1)` # add an element to the end

6-element Vector{Int64}:
 1
 2
 5
 3
 1
 -1

`julia> pop!(x)` # remove an element from the end

-1

`julia> append!(x, [2, 3])` # append [2, 3] to the end of x

7-element Vector{Int64}:
 1
 2
 3
 1
 2
 3

`julia> sort!(x)` # sort the elements, altering the same vector

7-element Vector{Int64}:
 1
 1
 2
 2
 3
 3
 5

`julia> sort(x);` # sort the elements as a new vector

`julia> x[1] = 2; print(x)` # change the first element to 2

[2, 1, 2, 2, 3, 3, 5]

`julia> x = [1, 2];`
`julia> y = [3, 4];`
`julia> x + y` # add vectors

2-element Vector{Int64}:
 4
 6

`julia> 3x - [1, 2]` # multiply by a scalar and subtract

2-element Vector{Int64}:
 2
 4

`julia> using LinearAlgebra`
G.1.6 Matrices

A matrix is a two-dimensional array. Like a vector, it is constructed using square brackets. We use spaces to delimit elements in the same row and semicolons to delimit rows. We can also index into the matrix and output submatrices using ranges.

```
 julia> X = [1 2 3; 4 5 6; 7 8 9; 10 11 12];
 julia> typeof(X)  # a 2-dimensional array of Int64s
 Matrix{Int64} (alias for Array{Int64, 2})
 julia> X[2]  # second element using column-major ordering
 4
 julia> X[3,2]  # element in third row and second column
 8
```
julia> X[1, :] # extract the first row
3-element Vector{Int64}:
 1
 2
 3

julia> X[:, 2] # extract the second column
4-element Vector{Int64}:
 2
 5
 8
 11

julia> X[:, 1:2] # extract the first two columns
4×2 Matrix{Int64}:
 1 2
 4 5
 7 8
 10 11

julia> X[1:2, 1:2] # extract a 2x2 submatrix from the top left of x
2×2 Matrix{Int64}:
 1 2
 4 5

julia> Matrix{Float64} # alias for a 2-dimensional array
Matrix{Float64} (alias for Array{Float64, 2})

We can also construct a variety of special matrices and use array comprehensions:

julia> Matrix(1.0I, 3, 3) # 3x3 identity matrix
3×3 Matrix{Float64}:
 1.0 0.0 0.0
 0.0 1.0 0.0
 0.0 0.0 1.0

julia> Matrix(Diagonal([3, 2, 1])) # 3x3 diagonal matrix with 3, 2, 1 on diagonal
3×3 Matrix{Int64}:
 3 0 0
 0 2 0
 0 0 1

julia> zeros(3, 2) # 3x2 matrix of zeros
3×2 Matrix{Float64}:
 0.0 0.0
 0.0 0.0
 0.0 0.0

julia> rand(3, 2) # 3x2 random matrix
3×2 Matrix{Float64}:
 0.43105 0.452113
Matrix operations include the following:

```julia
julia> X'          # complex conjugate transpose
3×4 adjoint(::Matrix{Int64}) with eltype Int64:
  1  4  7 10
  2  5  8 11
  3  6  9 12
julia> 3X .+ 2    # multiplying by scalar and adding scalar
4×3 Matrix{Int64}:
  5  8 11
 14 17 20
 23 26 29
 32 35 38
julia> X = [1 3; 3 1];  # create an invertible matrix
julia> inv(X)        # inversion
2×2 Matrix{Float64}:
  -0.125  0.375
  0.375  -0.125
julia> pinv(X)      # pseudoinverse (requires LinearAlgebra)
2×2 Matrix{Float64}:
  -0.125  0.375
  0.375  -0.125
julia> det(X)       # determinant (requires LinearAlgebra)
-8.0
julia> [X X]        # horizontal concatenation, same as hcat(X, X)
2×4 Matrix{Int64}:
  1  3 1 3
  3 1 3 1
julia> [X; X]       # vertical concatenation, same as vcat(X, X)
4×2 Matrix{Int64}:
  1 3
  3 1
  1 3
  3 1
julia> sin.(X)      # elementwise application of sin
2×2 Matrix{Float64}:
  0.841471  0.14112
```

© 2022 Massachusetts Institute of Technology, shared under a under a Creative Commons CC-BY-NC-ND license.
2021-09-29 14:27:41-07:00, revision 56b14c5, comments to bugs@algorithmsbook.com
0.14112 0.841471

```julia
julia> map(sin, X)  # elementwise application of sin
2×2 Matrix{Float64}:
  0.841471  0.14112
  0.14112   0.841471
julia> vec(X)  # reshape an array as a vector
4-element Vector{Int64}:
  1
  3
  3
  1
```

G.1.7 Tuples

A *tuple* is an ordered list of values, potentially of different types. They are constructed with parentheses. They are similar to vectors, but they cannot be mutated.

```julia
julia> x = ()  # the empty tuple
()
julia> isempty(x)
true
julia> x = (1, )  # tuples of one element need the trailing comma
(1,)
julia> typeof(x)
Tuple{Int64}
```

```julia
julia> x = (1, 0, [1, 2], 2.5029, 4.6692)  # third element is a vector
(1, 0, [1, 2], 2.5029, 4.6692)
julia> typeof(x)
Tuple{Int64, Int64, Vector{Int64}, Float64, Float64}
```

```julia
julia> x[2]
0
julia> x[end]
4.6692
julia> x[4:end]
(2.5029, 4.6692)
julia> length(x)
5
julia> x = (1, 2)
(1, 2)
```

```julia
julia> a, b = x;
```

```julia
julia> a
1
julia> b
2
```
G.1.8 Named Tuples

A *named tuple* is like a tuple but where each entry has its own name.

```julia
julia> x = (a=1, b=-Inf)
(a = 1, b = -Inf)
julia> x isa NamedTuple
true
julia> x.a
1
julia> a, b = x;
julia> a
1
julia> (; :a=10)
(a = 10,)
julia> (; :a=10, :b=11)
(a = 10, b = 11)
julia> merge(x, (d=3, e=10))  # merge two named tuples
(a = 1, b = -Inf, d = 3, e = 10)
```

G.1.9 Dictionaries

A *dictionary* is a collection of key-value pairs. Key-value pairs are indicated with a double arrow operator `=>`. We can index into a dictionary using square brackets just as with arrays and tuples.

```julia
julia> x = Dict();  # empty dictionary
julia> x[3] = 4  # associate key 3 with value 4
4
julia> x = Dict(3=>4, 5=>1)  # create a dictionary with two key-value pairs
Dict{Int64, Int64} with 2 entries:
   5  => 1
   3  => 4
julia> x[5]  # return the value associated with key 5
1
julia> haskey(x, 3)  # check whether dictionary has key 3
true
julia> haskey(x, 4)  # check whether dictionary has key 4
false
```
G.1.10 Composite Types

A composite type is a collection of named fields. By default, an instance of a composite type is immutable (i.e., it cannot change). We use the `struct` keyword and then give the new type a name and list the names of the fields.

```julia
struct A
    a
    b
end
```

Adding the keyword `mutable` makes it so that an instance can change.

```julia
mutable struct B
    a
    b
end
```

Composite types are constructed using parentheses, between which we pass in values for each field. For example,

```julia
x = A(1.414, 1.732)
```

The double-colon operator can be used to specify the type for any field.

```julia
struct A
    a::Int64
    b::Float64
end
```

These type annotations require that we pass in an `Int64` for the first field and a `Float64` for the second field. For compactness, this text does not use type annotations, but it is at the expense of performance. Type annotations allow Julia to improve runtime performance because the compiler can optimize the underlying code for specific types.

G.1.11 Abstract Types

So far we have discussed concrete types, which are types that we can construct. However, concrete types are only part of the type hierarchy. There are also abstract types, which are supertypes of concrete types and other abstract types.

We can explore the type hierarchy of the `Float64` type shown in figure G.1 using the `supertype` and `subtypes` functions.

![Type Hierarchy Diagram](image-url)

© 2022 Massachusetts Institute of Technology, shared under a Creative Commons CC-BY-NC-ND license.
We can define our own abstract types.

```julia
abstract type C end
abstract type D <: C end  # D is an abstract subtype of C
struct E <: D # E is a composite type that is a subtype of D
    a
end
```

G.1.12 Parametric Types

Julia supports *parametric types*, which are types that take parameters. The parameters to a parametric type are given within braces and delimited by commas. We have already seen a parametric type with our dictionary example.

```julia
julia> x = Dict(3=>1.4, 1=>5.9)
Dict{Int64, Float64} with 2 entries:
    3 => 1.4
    1 => 5.9
```

For dictionaries, the first parameter specifies the key type, and the second parameter specifies the value type. The example has `Int64` keys and `Float64` values, making the dictionary of type `Dict{Int64, Float64}`. Julia was able to infer these types based on the input, but we could have specified it explicitly.
While it is possible to define our own parametric types, we do not need to do so in this text.

G.2 Functions

A *function* maps its arguments, given as a tuple, to a result that is returned.

G.2.1 Named Functions

One way to define a *named function* is to use the `function` keyword, followed by the name of the function and a tuple of names of arguments.

```julia
function f(x, y)
    return x + y
end
```

We can also define functions compactly using assignment form.

```julia
f(x, y) = x + y;
```

```julia
f(3, 0.1415)
3.1415
```

G.2.2 Anonymous Functions

An *anonymous function* is not given a name, though it can be assigned to a named variable. One way to define an anonymous function is to use the arrow operator.

```julia
h = x -> x^2 + 1  # assign anonymous function with input x to a variable h
#1 (generic function with 1 method)
```

```julia
h(3)
10
```

```julia
g(f, a, b) = [f(a), f(b)];  # applies function f to a and b and returns array
```

```julia
g(h, 5, 10)
2-element Vector{Int64}:
  26
  101
```

```julia
g(3->sin(x)+1, 10, 20)
2-element Vector{Float64}:
  0.4559788891106302
  1.9129452507276277
```
G.2.3 Callable Objects

We can define a type and associate functions with it, allowing objects of that type to be callable.

```
julia> (x::A)() = x.a + x.b  # adding a zero-argument function to the type A defined earlier
julia> (x::A)(y) = y*x.a + x.b # adding a single-argument function
julia> x = A(22, 8);
julia> x()  # adding a zero-argument function
30
julia> x(2)  # adding a single-argument function
52
```

G.2.4 Optional Arguments

We can assign a default value to an argument, making the specification of that argument optional.

```
julia> f(x=10) = x^2;
julia> f()    # adding a zero-argument function
100
julia> f(3)   # adding a single-argument function
9
julia> f(x, y, z=1) = x*y + z;
julia> f(1, 2, 3) # adding a single-argument function
5
julia> f(1, 2)  # adding a single-argument function
3
```

G.2.5 Keyword Arguments

Functions may use keyword arguments, which are arguments that are named when the function is called. Keyword arguments are given after all the positional arguments. A semicolon is placed before any keywords, separating them from the other arguments.

```
julia> f(; x = 0) = x + 1;
julia> f()   # adding a zero-argument function
1
julia> f(x = 10)  # adding a single-argument function
11
julia> f(x, y = 10; z = 2) = (x + y)*z;
julia> f(1)  # adding a single-argument function
11
```

© 2022 Massachusetts Institute of Technology, shared under a under a Creative Commons CC-BY-NC-ND license.
2021-09-29 14:27:41-07:00, revision 56b14c5, comments to bugs@algorithmsbook.com
The types of the arguments passed to a function can be specified using the double colon operator. If multiple methods of the same function are provided, Julia will execute the appropriate method. The mechanism for choosing which method to execute is called dispatch.

```
julia> f(x::Int64) = x + 10;
julia> f(x::Float64) = x + 3.1415;
julia> f(1)
11
```

The method with a type signature that best matches the types of the arguments given will be used.

```
julia> f(x) = 5;
julia> f(x::Float64) = 3.1415;
julia> f([3, 2, 1])
5
```

G.2.7 Splatting

It is often useful to splat the elements of a vector or a tuple into the arguments to a function using the ... operator.
G.3 Control Flow

We can control the flow of our programs using conditional evaluation and loops. This section provides some of the syntax used in the book.

G.3.1 Conditional Evaluation

Conditional evaluation will check the value of a Boolean expression and then evaluate the appropriate block of code. One of the most common ways to do this is with an if statement.

```julia
if x < y
    # run this if x < y
elseif x > y
    # run this if x > y
else
    # run this if x == y
end
```

We can also use the ternary operator with its question mark and colon syntax. It checks the Boolean expression before the question mark. If the expression evaluates to true, then it returns what comes before the colon; otherwise it returns what comes after the colon.

```julia
f(x) = x > 0 ? x : 0;
f(-10) # returns 0
f(10)  # returns 10
```
G.3.2 Loops

A loop allows for repeated evaluation of expressions. One type of loop is the while loop. It repeatedly evaluates a block of expressions until the specified condition after the while keyword is met. The following example sums the values in the array \(x \).

\[
X = [1, 2, 3, 4, 6, 8, 11, 13, 16, 18]
\]
\[
s = 0
\]
\[
\text{while } !\text{isempty}(X)
\]
\[
\quad s += \text{pop!}(X)
\]
\[
\text{end}
\]

Another type of loop is the for loop. It uses the for keyword. The following example will also sum over the values in the array \(x \) but will not modify \(x \).

\[
X = [1, 2, 3, 4, 6, 8, 11, 13, 16, 18]
\]
\[
s = 0
\]
\[
\text{for } y \text{ in } X
\]
\[
\quad s += y
\]
\[
\text{end}
\]

The in can be substituted with = or \(\in \). The following code block is equivalent.

\[
X = [1, 2, 3, 4, 6, 8, 11, 13, 16, 18]
\]
\[
s = 0
\]
\[
\text{for } i = 1: \text{length}(X)
\]
\[
\quad s += X[i]
\]
\[
\text{end}
\]

G.3.3 Iterators

We can iterate over collections in contexts such as for loops and array comprehensions. To demonstrate various iterators, we will use the collect function, which returns an array of all items generated by an iterator:

\[
\textbf{julia} \> X = \text{["feed", "sing", "ignore"]};
\]
\[
\textbf{julia} \> \text{collect}(\text{enumerate}(X)) \# \text{return the count and the element}
\]
\[
3\text{-element Vector}\{\text{Tuple}\{\text{Int64, String}\}\}:
\]
\[
(1, \text{"feed"})
\]
\[
(2, \text{"sing"})
\]
\[
(3, \text{"ignore"})
\]
\[
\textbf{julia} \> \text{collect}(\text{eachindex}(X)) \# \text{equivalent to } 1: \text{length}(X)
\]
\[
3\text{-element Vector}\{\text{Int64}\}:
\]
G.4 Packages

A package is a collection of Julia code and possibly other external libraries that can be imported to provide additional functionality. This section briefly reviews a few of the key packages that we build upon. To add a registered package like Distributions.jl, we can run:

```julia
using Pkg
Pkg.add("Distributions")
```

To update packages, we use:

```julia
julia> Z = [1 2; 3 4; 5 6];
julia> import Base.Iterators: product
julia> collect(product(X, Y))  # iterate over Cartesian product of multiple iterators
3×3 Matrix{Tuple{String, Float64}}:
("feed", -5.0)  "feed", -0.5)  "feed", 0.0)
("sing", -5.0)  "sing", -0.5)  "sing", 0.0)
("ignore", -5.0)  "ignore", -0.5)  "ignore", 0.0)
To use a package, we use the keyword `using`:

```julia
using Distributions
```

### G.4.1 LightGraphs.jl

We use the LightGraphs.jl package (version 1.3) to represent graphs and perform operations on them:

```julia
using LightGraphs
G = SimpleDiGraph(3); # create a directed graph with three nodes
add_edge!(G, 1, 3); # add edge from node 1 to 3
add_edge!(G, 1, 2); # add edge from node 1 to 2
rem_edge!(G, 1, 3); # remove edge from node 1 to 3
add_edge!(G, 2, 3); # add edge from node 2 to 3
```

```julia
typeof(G) # number of nodes (also called vertices)
v(G) # number of nodes (also called vertices)
outneighbors(G, 1) # list of outgoing neighbors for node 1
inneighbors(G, 1) # list of incoming neighbors for node 1
```

### G.4.2 Distributions.jl

We use the Distributions.jl package (version 0.24) to represent, fit, and sample from probability distributions:

```julia
using Distributions
μ, σ = 5.0, 2.5;
dist = Normal(μ, σ); # create a normal distribution
rand(dist) # sample from the distribution
```

```julia
data = rand(dist, 3) # generate three samples
```

```julia
data = rand(dist, 1000); # generate many samples
```
### G.4.3 JuMP.jl

We use the JuMP.jl package (version 0.21) to specify optimization problems that we can then solve using a variety of different solvers, such as those included in GLPK.jl and Ipopt.jl:

```julia
julia> using JuMP
julia> using GLPK

julia> model = Model(GLPK.Optimizer) # create model and use GLPK as solver
A JuMP Model
Feasibility problem with:
Variables: 0
Model mode: AUTOMATIC
CachingOptimizer state: EMPTY_OPTIMIZER
Solver name: GLPK

julia> @variable(model, x[1:3]) # define variables x[1], x[2], and x[3]
3-element Vector{JuMP.VariableRef}:

julia> @objective(model, Max, sum(x) - x[2]) # define maximization objective
```
julia> @constraint(model, x[1] + x[2] ≤ 3)  # add constraint
julia> @constraint(model, x[2] + x[3] ≤ 2)  # add another constraint
julia> @constraint(model, x[2] ≥ 0)  # add another constraint
x[2] ≥ 0.0
julia> optimize!(model)  # solve
julia> value.(x)  # extract optimal values for elements in x
3-element Vector{Float64}:
  3.0
  0.0
  2.0

G.5 Convenience Functions

There are a few functions that allow us to more compactly specify the algorithms in the body of this book. Julia 1.7 will support a two-argument version of `findmax`, where we can pass in a function and a collection. It returns the maximum of the function when evaluated on the elements of the collection along with the first maximizing element. The `argmax` function is similar, but it only returns the first maximizing element. To support this in Julia 1.6, we manually extend these functions.

```julia
function Base.findmax(f::Function, xs)
 f_max = -Inf
 x_max = first(xs)
 for x in xs
 v = f(x)
 if v > f_max
 f_max, x_max = v, x
 end
 end
 return f_max, x_max
end

Base.argmax(f::Function, xs) = findmax(f, xs)[2]
```

julia> findmax(x→x^2, [0, -10, 3])
(100, -10)
julia> argmax(abs, [0, -10, 3])
-10

© 2022 Massachusetts Institute of Technology, shared under a under a Creative Commons CC-BY-NC-ND license.
2021-09-29 14:27:41-07:00, revision 56b14c5, comments to bugs@algorithmsbook.com
The following functions are useful when working with dictionaries and named tuples:

```julia
julia> a = Dict{Symbol, Integer}((a=1, b=2, c=3))
Dict{Symbol, Integer} with 3 entries:
 :a => 1
 :b => 2
 :c => 3
julia> isequal(a, (a=1, b=2, c=3))
true
julia> isequal(a, (a=1, c=3, b=2))
true
julia> Dict{Dict{Symbol, Integer}, Float64}((a=1, b=1) => 0.2, (a=1, b=2) => 0.8)
Dict{Dict{Symbol, Integer}, Float64} with 2 entries:
 Dict(:a=>1, :b=>1) => 0.2
 Dict(:a=>1, :b=>2) => 0.8
```

We define `SetCategorical` to represent distributions over discrete sets.

```julia
struct SetCategorical
 elements::Vector{S} # Set elements (could be repeated)
 distr::Categorical # Categorical distribution over set elements

 function SetCategorical(elements::AbstractVector{S}) where S
 weights = ones(length(elements))
 return new{S}(elements, Categorical(normalize(weights, 1)))
 end

 function SetCategorical(elements::AbstractVector{S}, weights::AbstractVector{Float64}) where S
 ℓ₁ = norm(weights, 1)
 if ℓ₁ < 1e-6 || isinf(ℓ₁)
 return SetCategorical(elements)
 end
 distr = Categorical(normalize(weights, 1))
 return new{S}(elements, distr)
 end
end
```

© 2022 Massachusetts Institute of Technology, shared under a under a Creative Commons CC-BY-NC-ND license.
2021-09-29 14:27:41-07:00, revision 56b14c5, comments to bugs@algorithmsbook.com
Distributions.rand(D::SetCategorical) = D.elements[rand(D.distr)]
Distributions.rand(D::SetCategorical, n::Int) = D.elements[rand(D.distr, n)]

function Distributions.pdf(D::SetCategorical, x)
    sum(e == x ? w : 0.0 for (e,w) in zip(D.elements, D.distr.p))
end

julia> D = SetCategorical(["up", "down", "left", "right"],[0.4, 0.2, 0.3, 0.1]);
julia> rand(D)
"up"
julia> rand(D, 5)
5-element Vector{String}:
    "up"
    "left"
    "up"
    "left"
    "left"
julia> pdf(D, "up")
0.3999999999999999